

®

Integer Dividers

January 1996, ver. 1 Functional Specification 3

■

divide

 and

dividex

 reference designs implementing high-speed,

Altera Corporation 1

Features
parallel dividers

■ Parameterized dividend and divisor bit widths
■ Optimized for the FLEX 10K and FLEX 8000 device families
■ High-speed operation
■ Two’s complement arithmetic for all inputs and outputs
■ Supported by schematic and text design entry methods, including

VHDL, Verilog HDL, and the Altera Hardware Description
Language (AHDL)

■ Useful for a variety of applications, including scaling data and
computations

Division
Algorithms

Altera FLEX 10K and FLEX 8000 devices provide an ideal architecture for
implementing arithmetic division. The FLEX architecture includes an
efficient and straightforward addition/subtraction function in each FLEX
logic element (LE).

Two algorithms are commonly used to perform exact arithmetic division:
restoring and non-restoring. The divider functions described in this
functional specification are implemented using a non-restoring division
algorithm.

Restoring Division

In restoring division, the divisor is shift-positioned and subtracted from
the dividend. If subtraction of the divisor produces a negative result at
any bit position relative to the dividend, the operation at that bit position
is unsuccessful, and a 0 is placed in the corresponding location of the
quotient. The divisor is added back (restored) to the result of the division
operation, then the next highest bit of the dividend is shifted into the left
bit position of the result. As each bit of the dividend is shifted from right
to left, the quotient is built up from left to right. After n shifts, where n
represents the number of bits in the dividend, the division operation is
complete. The result after the last restore operation is the remainder. This
algorithm is very similar to manually performing long division.
A-FS-03-01

FS 3: Integer Dividers

Non-Restoring Division

2 Altera Corporation

Non-restoring division is developed from the restoring algorithm as
shown below. The operation in each step depends on the result of the
previous step.

1. Subtract the divisor from the most significant bit (MSB) of the
dividend.

2. “Bring down” the next MSB of the divisor and append it to the result
of step 1.

3. Check the sign for the result of step 2. If the result of step 2 is
positive:

a. Set the next MSB of the quotient to 1.

b. Subtract the divisor from the result to produce a new result.

If the result from step 2 is negative:

a. Set the next MSB of the quotient to 0.

b. Add the divisor to the result to produce a new result.

4. Repeat steps 2 and 3 until all bits of the quotient are determined.

For example, to calculate the following equation, you can use longhand
division as shown in Figure 1.

2 41 decimal = 010 0101001 binary

FS 3: Integer Dividers

Figure 1. Non-Restoring Division

Altera Corporation 3

In this example, 2 decimal equals 010 binary, and –2 decimal equals 110 binary. The bits shown in blue are “brought down”
from the dividend.

010 0101001 Decimal Comment: Quotient:
Equivalent:

 110 –2 Subtract divisor (by adding two’s complement).???????

 1101 –3 Result is negative, MSB of quotient is 0.0??????
 010 2 Add divisor.

 1110 –2 Result is negative, MSB – 1 of quotient is 0.00?????
 010 2 Add divisor.

 0001 1 Result ≥ 0, MSB – 2 of quotient is 1. 001????
 110 –2 Subtract divisor.

 1110 –1 Result < 0, MSB – 3 of quotient is 0. 0010???
 010 2 Add divisor.

 0000 0 Result ≥ 0, MSB – 4 of quotient is 1. 00101??
 110 –2 Subtract divisor.

 1101 –3 Result < 0, MSB – 5 of quotient is 0. 001010?
 010 –2 Add divisor.

 111 –1 Result < 0, MSB – 6 of quotient is 0. 0010100
 010 2 Add divisor for remainder.

 001 1 Remainder = 1.

This long division produces a quotient of 0010100 binary, i.e., 20 decimal,
with a remainder of 1. The result is intuitive because any number divided
by 2 is simply that number right-shifted by 1 bit.

Extra logic is required to accommodate the two’s complement dividend
and divisors to ensure that the signs are correct. This logic is implemented
in the AHDL Text Design File (.tdf).

f Go to MAX+PLUS II Help for more information about AHDL.

FS 3: Integer Dividers

Non-restoring division can be easily extended to produce a

4 Altera Corporation

fractional result. Simply assume a binary point to the right of the
dividend’s least significant bit (LSB), and right-extend the dividend
with 0s as far as desired. The same algorithm is continued until the
quotient reaches the desired precision.

divide

High-Speed Parallel Divider with Remainder

The

divide

 reference design, implemented with the AHDL file

Altera Corporation 5

General
Description

divide.tdf, is a high-speed integer parallel divider with a remainder. It
provides parameterized dividend and divisor (and consequently quotient
and remainder) bit widths. See Figure 2.

Figure 2. divide Symbol

Regardless of the sign of the dividend and divisor, this function always
maintains the following relationship:

quotient + (remainder/divisor) = (dividend/divisor)

This number can be represented in multiple ways. For example, the
decimal result for both –3/2 and 3/–2 is –1.5. In quotient + remainder
notation, –3/2 is represented as – 2 + 1/2, and 3/–2 is represented as –2 +
–1/–2.

Function Prototype

The AHDL Function Prototype for the divide function is shown below:

FUNCTION divide (dividend[dividend_width..1],
 divisor[divisor_width..1])
 WITH (dividend_width, divisor_width)
 RETURNS (remain[divisor_width..1], quotient[dividend_width..1]);

Parameters

Parameters for the divide function are provided in Table 1.

DIVIDEND[DIVIDEND_WIDTH..1]
DIVISOR[DIVISOR_WIDTH..1] REMAIN[DIVISOR_WIDTH..1]

QUOTIENT[DIVIDEND_WIDTH..1]

DIVIDE

DIVIDEND_WIDTH=
DIVISOR_WIDTH=

Table 1. divide Parameters

Name Default Value Description

dividend_width 7 Integer Width of dividend (in bits)

FS 3: Integer Dividers

6 Altera Corporation

Ports

Input and output ports for the divide function are described in Table 2.

divisor_width 7 Integer Width of divisor (in bits)

Table 1. divide Parameters

Name Default Value Description

Table 2. Input & Output Ports

Port
Type

Name Description

Input dividend[dividend_width..1] Dividend input

Input divisor[divisor_width..1] Divisor input

Output quotient[dividend_width..1] Integer portion of result; value is
dividend[]/divisor[]

Output remain[divisor_width..1] Remainder; value is
dividend[] mod divisor[]

dividex

High-Speed Parallel Divider with Fractional Result

The

dividex

 reference design, implemented with the AHDL file

Altera Corporation 7

General
Description

dividex.tdf, is a high-speed integer parallel divider with a fractional
result. See Figure 3. The algorithm used for the dividex function is
identical to the algorithm used for the divide function, except it includes
an assumed binary point to the right of the LSB of the dividend. All bits to
the right of the binary point are assumed to be 0.

Figure 3. dividex Symbol

Function Prototype

The AHDL Function Prototype for the dividex function is shown below:

FUNCTION dividex (dividend[dividend_width..1],
 divisor[divisor_width..1])
 WITH (dividend_width, divisor_width, fractional_width)
 RETURNS (quotient[dividend_width..1],
 fractional[fractional_width..1]);

Parameters

Parameters for the dividex function are provided in Table 3.

DIVIDEND[DIVIDEND_WIDTH..1]
DIVISOR[DIVISOR_WIDTH..1] REMAIN[DIVISOR_WIDTH..1]

QUOTIENT[DIVIDEND_WIDTH..1]

DIVIDEX

DIVIDEND_WIDTH=
DIVISOR_WIDTH=
FRACTIONAL_WIDTH=

Table 3. dividex Parameters

Name Default Value Description

dividend_width 7 Integer Width of dividend (in bits)

divisor_width 7 Integer Width of divisor (in bits)

fractional_width 4 Integer Width of fractional portion of
output

FS 3: Integer Dividers

Ports

Altera, MAX, MAX+PLUS, and FLEX are registered trademarks of Altera Corporation. The following are
trademarks of Altera Corporation: MAX+PLUS II, AHDL, and FLEX 10K. Altera acknowledges the
trademarks of other organizations for their respective products or services mentioned in this document,
specifically: Verilog and Verilog-XL are registered trademarks of Cadence Design Systems, Inc. Mentor
Graphics is a registered trademark of Mentor Graphics Corporation. Synopsys is a registered trademark of
Synopsys, Inc. Viewlogic is a registered trademark of Viewlogic Systems, Inc. Altera products are protected
under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera
warrants performance of its semiconductor products to current specifications in accordance with Altera’s
standard warranty, but reserves the right to make changes to any products and services at any time without
notice. Altera assumes no responsibility or liability arising out of the application or use of
any information, product, or service described herein except as expressly agreed to in
writing by Altera Corporation. Altera customers are advised to obtain the latest version of
device specifications before relying on any published information and before placing
orders for products or services.

Copyright  1996 Altera Corporation. All rights reserved.

2610 Orchard Parkway
San Jose, CA 95134-2020
(408) 894-7000
Applications Hotline:
(800) 800-EPLD
Customer Marketing:
(408) 894-7104
Literature Services:
(408) 894-7144

®

8 Altera Corporation

Input and output ports for the dividex function are described in Table 4.

Table 4. Input & Output Ports

Port
Type

Name Description

Input dividend[dividend_width..1] Dividend input.

Input divisor[divisor_width..1] Divisor input.

Output quotient[dividend_width..1] Integer portion of result. Value
is integer
(dividend[]/divisor[]).

Output fractional[divisor_width..1] Fractional portion of result.
Value is fractional
(dividend[]/divisor[]).
Printed on Recycled Paper.

	Contents
	FS 3: Integer Dividers
	Features
	Division Algorithms
	Restoring Division
	Non-Restoring Division

	divide High-Speed parallel Divider with Remainder
	General Description
	Function Prototype
	Parameters
	Ports

	dividex High-Speed Parallel Divider with Fractional Result
	General Description
	Function Prototype
	Parameters
	Ports

